Production : Output and environmental quality $Q_i = Q_i(x_{i1}..x_{iI}, E_i)$ all i $C_i = C_x X_I + c_w E_i$ for all i $P_i = P_i(Q_i)$

where:

 Q_i

E

Ċx

= the output of the ith product

- = environmental quality input for the ith product
- x_J P_i = vector of $x_1, ..., x_i$ = other variable inputs; j = i,...J

= market price of Q_1

- = vector of c_{xi} ... c_{xi} , strictly positive input prices
- = Output Price x Marginal Contribution of Input X

Consumption : goods, services

$$C_{i} = C_{i}(q_{i1}..q_{iJ}, E_{i}, Y, t)$$
 all i

- Ci = the consumption of the product q Ei = environmental amenity Y = income
- t = time

Effects of "Zero" Price

- Producers:
 - It costs to supply goods and services
 - Over use of zero-priced inputs, over-production
 - High producers' surplus,
 - Excessive profits (above normal profit, or economic rent)
 - Too many producers
- Users, consumers
 - It costs to consume goods and services
 - Over-use of zero priced goods, services, amenities
 - High consumer's surplus
 - Too many users
 - High externalities:residuals (garbage); congestion

UNDERPRICING OF SCARCE NATURAL RESOURCES AND ENVIRONMENTAL ASSETS CAUSES DEPLETION AND DEGRADATION

Full Cost Pricing

- MUC = depletion cost = user cost
 - = internalized through secure property rights (if private discount rate = social discount rate; or use output taxes or tradable production quotas
- MEC = internalized via taxes, charges, tradable permits, user fees or other instruments.

WHY Payments for Ecosystem Services (PES)?

- Uneven benefits and costs of conservation
 - free benefits to users
 - costly to suppliers: specially poor, disadvantaged, groups
- Users Pay, Beneficiaries Pay, Principle
- Producers Get Paid

WHY Payments for Environmental Services (PES)?

For many developing country cases with some form of conservation payments (in-kind subsidies, cash):

- 1. not sustainable: post project backsliding
 - integrated conservation development projects financed by
 - » Loans
 - » Bilateral assistance
 - » NGO assistance
 - » Governments
- 2. not earned by the poor providers

WHY PES?

Previous subsidies for conservation...

3. were not effective: no critical mass of ES

- remained at pilot scale, and at experimental stage
- no scaling up, no sustainability

4. caused unexpected negative impacts

- other environmental problems
- strategic behavior effects
- need correction, redesign
- impoverishment due to displacement from large scale reforestation/carbon sequestration

WHY PES?

- Lessons:
 - identification, attribution and measurement problems
 - beneficiaries and providers were not linked
 - absent preconditions: functioning institutions, clear property rights
 - Inadequate attention to transactions costs:
 - Information needed for sounde decision-making
 - Joint decision-making processes
 - Compliance and enforcement
 - •
 - short-lived sources of support
 - dominance of policies that penalized conservationists

Policy Instruments							
USING MARKETS (economic instruments)	CREATING MARKETS (RIGHTS) (economic instruments)	DIRECT REGULATION (command and control)	ENGAGING THE PUCLIC (transactions costs concerns)				
Subsidy	Property rights	Standards (technological, product, performance)	Public participation				
Taxes & Charges	Tradable permits & rights	Permit, quotas	Information disclosure				
User Fees	Tradable quotas	Ban	Voluntary agreement				
Deposit-refund schemes	Int'l offsets		Liability Rules				
	Common Property Resource Mngt.	Zoning					

Reduced Soil Erosion Greater Soil Erosion

Example 1. Arenal-Tempisque Watershed

SANDILLAL POWER PLANT

Irregular Water Flow

Baseline payoff matrix – Unrespons

Payoff matrix-2 – Responsive ICE Manager (NPV, \$ million)

	Forest Reserves	Dairy/Cattle Farms	ICE	Irrigated Farms	Wetland	Fishermen	Realized Benefit
Forest Reserves	Maximize forest area (39.7)						(39.7)
Dairy Cattle Farms	-	Maximize dairy & cattle income (38)					(38.0)
ICE	-	Siltation of reservoirs (-5.4)	Optimize electricity production (1,123.9)				(1,118.5)
Irrigated Farms	-	-	-	Maximize crop income (195)	Bird damage to crops (-20.1)		(174.9)
Wetland	-	-	-	Agro-chemical pollution and soil runoff (-51.6)	Maximize conservation (70.7)		(19.1)
Fishermen	-	-	-	Agro-chemical pollution and soil runoff (-111.6)	Reduced Agro-chemical and soil runoff (16.9)	Maximize fish income (121.2)	(26.5)
Net Benefit	(39.7)	(32.6)	(1,123.9)	(31.8)	(67.5)	(121.2)	(1,416.7)

 Responsive ICE Manager scenario, takes own in-situ action to remove sediment by closing reservoirs and dredging sediment, thereby incurring additional management costs but avoiding major power losses. No change in Total NPV

Payoff matrix-3 – Proactive ICE Manager (NPV,\$ million)

	Forest Reserves	Dairy/Cattle Farms	ICE	Irrigated Farms	Wetland	Fishermen	Realized Benefit
Forest Reserves	Maximize forest area (39.7)						(39.7)
Dairy Cattle Farms	-	Maximize dairy & cattle income (0)					(0.0)
ICE	-	Siltation of reservoirs (0)	Optimize electricity production (1,821.6-57)				(1,764.6)
Irrigated Farms	-	-	-	Maximize crop income (195)	Bird damage to crops (-20.1)		(174.9)
Wetland	-	-	-	Agro-chemical pollution and soil runoff (-51.6)	Maximize conservation (70.7)		(19.1)
Fishermen	-	-	-	Agro-chemical pollution and soil runoff (-111.6)	Reduced Agro-chemical and soil runoff (16.9)	Maximize fish income (121.2)	(26.5)
Net Benefit	(39.7)	(0)	(1,764.6)	(31.8)	(67.5)	(121.2)	(2,024.8)

Proactive ICE Manager avoids the sedimentation problem by "buying out" the dairy sector with a 50% premium ($$38m \times 1.5 = $57 m$). New total Net Benefits = \$2024.8 M > baseline and Scenario 2 = \$1416.7

Insights

- Most externalities (off-diagonal elements) are negative; Electricity and irrigation provide 90% of the benefits in the AT system
- As originally measured, dairy operations and ranching provide negative benefits worth \$665

Insights (cont.)

- Rapid siltation of the low cost Corobici (Santa Rosa) reservoir drives the upstream impacts
- Dredging of the Santa Rosa reservoir may be an economical option and should be considered (and costed) – see Scenario 2. Interventions in the upper watershed also look attractive – see Scenario3.
- Downstream, system benefits are larger with increased irrigated acreage, however demand side effects may lower this benefit
- The major impact of chemicals is on the estimated life of the wetlands and fisheries (however, valuation of wetlands at \$200 per hectare per year may be high)

Valuation as a basis for watershed protection payments by downstream, irrigated farmers to upstream pasturalists

How much are downstream beneficiaries likely to pay? How much are pasturalists likely to accept?

Source: S Pagiola

General Principles for Value-in-Use of Water

AL SJENME ELE BEJEBBURGE OST

General Principles for Cost of Water

Example 2

(per cu.m.) from Rogers et.al. 199	7			
		Value in l	Jse = \$1.30	
Environmental				
Externalities = \$0.50				
Economic Externalities (n.a.)				i i
Opportunity Cost = 0			Full	Full
			Economic	Cost
Capital Charges = \$0.24		Full	Costs	=\$1.08
		Supply	=\$0.58	
		Costs =		
O&M Costs = \$0.34		\$0.58		
			•	/ 1

WORLD BANK PES: Initial Lessons

- Regular payments needed
 - Monitoring important
- Contracting with providers
- Most biodiversity mechanisms not set up for long term payments
- Institutionalization important:
 - Contracting services
- Oftentimes:
 - Too enthusiastic action too early

- Potentially applicable to a subset of wildlife conservation cases
- Developing effective payments to providers have lots of implementation problems but not insurmountable
- -Who pays remains to be the main problem

ECOSYSTEMS SERVICES PAYMENTS MECHANISMS

WHY SHOULD USERS PAY FOR ENVIRONMENTAL SERVICES?

- Surplus earned by producers and consumers should be shared by society
 - Higher net earnings from irrigation
 - Benefits from secure water supplies, recreation
- Sustain ES to avoid higher cost of next best alternatives: encourage good use
- Enhance ES to lower maintenance and avoid replacement cost

ECOSYSTEMS SERVICES